
Checkpoint Space Reclamation for Adda he first issue, L*., to guarantee recovery fine progre&-

Uncoordinated Checkpointing 5103. Coordinated chei'nting [5,61 eliminates the domino ef-
in Message-Passing Systems fect by sacrificing a certain degree of process autonomy. Extra

coordination messages are required to enforce the consistency

between the checkpoints belonging to the same checkpointing
Yi-Min Wang, Pi-Yu Chung, [n-Jen Lin session. The run-time overhead can be reduced if certain op-

and W. Kent Fuchs timization techniques can be employed [7]. For applications
which require process autonomy in taking checkpoints in order

Abstract- Uncoordinated checkpointing allows process au- to exploit application-dependent information to checkpoint at
tonomy and general nondeterministic execution, but suffers the "right time", e.g., when the process state is minimal, lazy
from potential domino effects and the associated space over- checkpoint coordination [8] can be incorporated into an uncoor- _
head. Previous to this research, checkpoint space reclama- dinted of
tion had been based on the notion of obsolete checkpoints; checkpointing protocol to provide a trade-off between

as a result, a potentially unbounded number of nonobsolete coordination overhead and recovery efficiency.
checkpoints may have to be retained on stable storage. In Another approach to eliminating the domino effect is to ex-
this paper, we derive a necessary and sufficient condition ploit the piecesise deterministic execution model [9-11], in which ____

for identifying all garbage checkpoints. By using the ap- each process execution is viewed as a number of deterministic
proach of recovery line transformation and decomposition, state intervals bounded by noudeterministic events. It has been
we develop an optimal checkpoint space reclamation algo-
rithm and show that the space overhead for uncoordinated shown [12] that by considering each nondeterministic event log
checkpointing is in fct bounded by N(N + 1)/2 checkpoints as a logical checkpoint [13] taken at the end of the ensuing state WM
where N is the number of processes. interval, the same dependency model and hence the checkpoint -

Keyword#-- fault tolerance, message-pasing systems, unco- space reclamation algorithm developed in this paper can still be
ordinated checkpointing, rollback recovery, garbage coilec- applied.
tion. Traditionally, checkpoint space reclamation for uncoordinated

checkpointing has been based on the notion of obsolete check-
I. INTRODUCTION points: the global recovery line which suffices to recover from

Checkpointing and rollback recovery as an effective approach the failure of the entire system is computed; then all of the ob-
to tolerating both hardware and software faults. During nor- solete checkpoints before that recovery line are no longer useful
mal execution, the state of each process is periodically saved and can be discarded. In contrast, all of the nonobsolete check-
on stable storage as a checkpoint. When a failure occurs, the points have been assumed to be possibly useful for some future
process can roll back to a previous checkpoint by reloading the recovery and should be retained. With the possibility of domino
checkpointed state. In a message-passing system, rollback prop- effects, the number of nonobsolete checkpoints is potentially un-
agation can occur when the rollback of a message sender results bounded.
in the rollback of the corresponding receiver. The system is Motivated by the observation that being obsolete is simply
then required to roll back to the latest available consistent set a sufficient condition for being garbage, we derive a necessary
of checkpoints called the recovery line to ensure correct recov- and sufficient condition for identifying all garbage checkpoints,
ery with a minimum amount of rollback. In the worst case, which leads to an optimal checkpoint space reclamation algo-
cascading rollback propagation may result in the domino effect rithm and the least upper bound on the number of nongarbage
[1] which prevents recovery line progression. checkpoints. Our approach is to model consistent global check-

Numerous checkpointing and rollback recovery techniques have points as maximum-sized antichamns of the partially ordered set
been proposed in the literature for message-passing systems. generated by the happened before relation between the check-
Uncoordinated checkpointing [2-4] allows maximum process an- points. We define a recovery line transformation and decom-
tonomy and general nondeterministic execution. Each process position, and demonstrate that any nongarbage checkpoint be-
takes its checkpoints independently and keeps track of the de- longing to a possible future recovery line must also be contained
pendencies among checkpoints resulting from message commu- in one of the N "immediate future" recovery lines, where N is
nications. When a failure occurs, the dependency information is the number of processes. It is also shown that these N recov-
used to determine the recovery line to which the system should ery lines can contain at most N(N + 1)/2 distinct nongarbage
roll back. The major disadvantages of uncoordinated check- checkpoints.
pointing have been the potential domino effect and the space The outline of the paper is as follows. Section II describes
overhead required for maintaining multiple checkpoints of each the checkpointing and recovery protocol and a model of con- aE :
process. sistent global checkpoints; Section III derives a necessary and 0 -

This paper addresses the second disadvantage by developing sufficient condition for identifying all nongarbage checkpoints A

an optimal checkpoint space reclamation algorithm to minimise and presents the optimal checkpoint space reclamation algo- 0

the space overhead. Several techniques have been proposed to rithm; the least upper bound on the number of nongarbage •. 0

checkpoints is derived in Section IV and experimental evalua- I
This research was supported in part by the Department of the Navy tion is described in Section V. Due to space limitation, some Z; 0•.

and managed by the Office of the Chief of Naval Research under Con- P-_
tract N00014-91-J-1283, and in part by the National Aeronautics and proofs are omitted and can be found in the complete technical ti

Space Administration (NASA) under Grant NASA NAG 1-613, in coop- report [14]. p"
eration with the Illinois Computer Laboratory for Aerospace Systems and
Software (ICLASS). II. CHECKPOINTING AND ROLLBACK RECOVERY0

Yi-Min Wang was with the Coordinated Science Laboratory, Univer- A|
sity of Illinois, Urbana, IL 61801; he is now with AT&T Bell Laboratories, A. Sstem Model and Recovery Protocol4.ra Ai.l Syte Moelan ecveyPrtoo

Pi-Yu Chung and W. Kent Fuchs are with the Coordinated Science The system considered in this paper consists of a mumber
Laboratory, University of Illinois, Urbana, IL 61801.

In-Jen Lin is with the Department of Mathematics, University of of concurrent processes for which all process communication is
Illinois, Urbana, IL 61801. through message passing. Processes are assumed to run on fail-

93-3137ý 193 1 27 1 131111111111Hpp

Best

Available
Copy

stop processors [15] and, for the purpose of presentation, each with the happened before relation forms a partiaily ordered set,
process is considered as an individual recovery unit. In order to or poset [19]. For our purpose, we consider only the induced
allow general nondeterministic execution, we do not assume the subposet R = (C, <), where C is the set of all checkpoints.
piecewise deterministic model. This implies that whenever the For a system with N processes, a global checkpoint is defined
sender of a message m rolls back and unsends m, the receiver as a set of N local checkpoints, one from each process. Based on
which has already processed m must also roll back to undo the earlier description of consistency, a consistent global check.-
the effect of m because the potential nondeterminism preceding point is a global checkpoint of which no two constituent check-
the sending of m may prevent the same message from being points are ordered by the happened before relation. For the pur-
resent during reexecution. Let c,,5 denote the zth checkpoint pose of recovery, we are interested in finding the latest available
(z > 0) of process pi (0 < i < N - 1), where N is the number consistent global checkpoint, referred to as the recovery line,
of processes in the system. Two checkpoints ci,, and c¢,1 are which minimizes the total rollback distance.
then considered inconsistent if there is any message sent after Our approach is based on the maximum-sized antichain model
cj,, and processed before c,,•, or vice versa. In contrast, when for consistent global checkpoints [18]. Given a poset P = (S, <),
the receiver of a message m' rolls back and unreceives m', the an antichain is a subset A of S such that z j Y for any x, y E A.
sender needs not roll back to unsend m' if m' can be retrieved Intuitively, a consistent global checkpoint corresponds to an an-
from a synchronousi message log [16,17] or through a reliable tichain of the poset R = (C, <). Since the initial checkpoints of
end-to-end transmission protocol [6]. all processes must form an antichain of size N and no antichain

During normal execution, each process takes its local check. can contain two checkpoints from the same process, the largest
points periodically without coordinating with any other pro- size of any antichain in R is exactly N. The following lemma
cesses. Let (i, x) denote the zth checkpoint interval of process summarizes the main results described by Wang et al. (18].
pi between consecutive checkpoints ci,, and ci,,+,. Each mes- Lemma 1: Given the poset R = (C, <) of checkpoints gener-
sage is tagged with the current checkpoint interval number and ated by the happened before relation and M, Mi, M2 g C, let
the process number of the sender. Each receiver pi performs M(R) denote the set of maximum-sized antichains of R.
direct dependency tracking [2,18] as follows: if a message sent
from (j, V) is processed in (i, z), then the direct dependency of
ci,s+i on ci,1 is recorded. (a) M is a consistent global checkpoint if and only if M E

A garbage collection procedure can be periodically invoked M(R).
by any process p. to reclaim the storage space of garbage check- (b) Let M[i] denote the constituent checkpoint of M which is
points. First, pi collects the direct dependency information from a checkpoint of pi and, for any MA, M 2 E M(R), define
all the other processes to construct the checkpoint graph [2] in Mi A M2 if Mi [i] < M2[i] for all 0 < i < N - 1. Then,
which each vertex represents a checkpoint and each edge rep- the poset (M(R), _) forms a lattice.
resents a direct dependency (including the implicit dependency
of any cj,•i+ on ci,y), as shown in Fig. 1(b). Then the roll- (c) The recovery line is the unique maximal maximum-sized
back propagation algorithm listed in Fig. 2 is executed on the antichain, denoted by M*(R), on the lattice (M(R), :).
checkpoint graph to determine the global recovery line2 (black In this paper, we will use the notation M(G) to represent the
vertices), before which all the checkpoints are obsolete (marked set of -- aximum-sized antichains of the poset corresponding to
"VX) and can be discarded, the transitive closure of the checkpoint graph G.? The notation

Fig. 1. Checkpointing and rollback recovery. (a) Example M*(G) is similarly defined.
checkpoint and communication pattern; (b) checkpoint graph
and extended checkpoint graph when po initiates a rollback. Ill. OPTIMAL CHEcxPiONT SPACE RECLAMATION

Fig. 2. The rollback propagation algorithm. A. Motivation and Problem Formulation
When any process initiates a rollback, it starts a similar pro-

cedure for recovery. The current volatile states of the surviving Since a future program execution may contain arbitrary check-
processes are treated as additional virtual checkpoints [3] for point dependencies and rollbacks, we first describe an execution
constructing an extended checkpoint graph of which the recov- model to make the problem tractable. An operational session
ery line is called the local recovery line (shaded vertices) and [3] is the interval between the start of normal execution and
indicates the consistent rollback state, the instance of rollback initiation, as shown in Fig. 3. A recov-

ery session immediately follows the previous operational session
B. A Model of Consistent Global Checkpoints and ends at the resumption of normal execution. A program ex-

In a message-passing system, event el directly happened be- ecution can be viewed as consisting of a number of alternating
fore event e2 [19] if operational sessions and recovery sessions. In terms of the ef-

"fect on the checkpoint graphs, new vertices are added as new
ime and e2 are events in the same proess and eo occurs checkpoints are taken during an operational session, and exist- -j
immediately before e2; or ing vertices can be deleted as some checkpoints are invalidated j

"* el is the sending of a message m and e2 is the receiving of by the rollback during a recovery session.
In. Fig. 3. Operational sessions, recovery sessions and nongarbage

The transitive closure of the direct happened before relation is checkpoints.
the happened before relation, denoted by <. The set of events Since the purpose of maintaining checkpoints is for possible

future recovery, a checkpoint is garbage if and only if it can
'Extension of our work to an asynchronous logging protocol is consid- fs

ered elsewhere [4]. 3
1t has been pointed out [18] that the poset R' corresponding to the

2
The giobal recovery line is to be used when the entire system fails, transitive closure of the checkpoint graph based on direct dependency S

whire a lodal recovery line is computed when only a subset of processes tracking is not exactly the same as R. However, R' and R possess the
fail. same set of maximum-sized antichains.

D ... _ _

not belong to any future recovery line. Being obsolete, i.e., throughout this paper to ensure that the unchanged part, which
before the global recovery line, is simply a sufficient condition forms an antichain in G1, remains an antichain in G2 after the
for being garbage, but not a necessary condition. We first give transformation.
an example of nonobeolete garbage checkpoints. Figure 4 is Lemma 2: Given a checkpoint graph G = (V, E) and its po-
a typical example illustrating the domino effect. The global tential supergraph G' = (V', E)) E .(G), for any A C V, A is
recovery line stays at the set of initial checkpoints and is unable
to move forward. The edge from co,2 to cl,2 and the one from an antichain in G if and only if A is an antichain in G'.

One special potential supergraph of G, denoted by 6, willc, to co,2 imply that ca v is inconsistent with any checkpoint play a major role throughout this paper. The graph G is con-
of process pr. Since a recovery line must contain one checkpoint structed by adjoining a new vertex n, at the end of G for each p,,
from each process, csh can not belong to any future recovery with a single incoming edge from the last vertex 1., as shown in
line' and is therefore a garbage checkpoint. Checkpoints c",i Fig. 5. Let L denote the set of all last-nodes 1. and B denote the
and c0,1 are garbage by similar arguments. set of all new-nodes n,. We will refer to the 2 tN graphs G - W,
Fig. 4. Example of nonobsolete garbage checkpoints. W C B, as the immediate supergraphs of G. The proof of the

Figure 4 in fact provides another sufficient condition for iden- following property defines the recovery line transformation
tifying garbage checkpoints; our optimal garbage collection aims within an operational session:
at deriving the necessary and sufficient condition. The difficulty
of the problem lies in the fact that future process execution given the recovery line of a potential supergraph w'
may contain any number of operational sessions (with arbitrary of G, by replacing its constituent checkpoints which
checkpoint dependencies) and recovery sessions (with arbitrary nre not contained in C with their corresponding
subsets of processes being faulty). We outline our approach as immediate supergraph of G.
follows. Instead of trying to find garbage checkpoints, we start
with identifying nongarbage checkpoints. Given any possible fu- Fig. 5. Construction of the potential supergraph d.
ture recovery line which contains some nongarbage checkpoints,
for example, the recovery line shown in Fig. 3. we perform re. Property 1: For any checkpoint v in a checkpoint graph G, ifv

covery line transformation to transform it into another recovery belongs to the recovery line of a potential supergraph G', then v
line which also contains those nongarbage checkpoints. We show must also belong to the recovery line of an immediate supergruph
that all possible future recovery lines containing any nongarbage of G. That is, given G = (V, E), v E V and G' E Q.(G), if
checkpoint can be transformed into a set of 2 N immediate fu- v E M*(G'), then v E M*((d - W) for some W C B.
ture" recovery lines. (Recall that N is the number of processes.) Proof. We partition M*(G') into Mi U M 2 where M1 =
Our next step is recovery line decomposition. Weidentify aset of M*(G')fnV and M 2 =M*(G')\V, asshownin Fig. 6. A corre-
N recovery lines which forms the 'basis" for those 2N recovery sponding partition of the new-nodes of G is given as B = B1 UB 2
lines and therefore contains all of the nongarbage checkpoints. such that B1 = {n, : M*(G')[s] E Ml) and B 2 = {n,

B. Recovery Line Tranaformation M*(G')fj] E M2). Our goal is to show that M'(G - B1) =
M1 U B2 . Then, for any v C V and v E M*(G'), we must have

Our approach to transforming an arbitrary future recovery v E MA1 C M'(- W) where W = B, g B.
line backwards in time is to first define two elementary trans- Fig. 6. Recovery line transformation within an operational ses-
formations: transformation within an operational session and sion.
transformation across a recovery session. Any transformation First we show that Mm o n .4(d- BI). Define the subset
can then be achieved through a combination of these two ele- L2 of last-nodes corres-inding to M 2 as L 2 = {(1 : M* (G')[j] Ementary transformations. M2). Because Ml1 t 12 forms an antichain in G', we must
Transformation within an operational session have MA(G')(,1 : 1 '.r any M'(G')[i] E MA and I, E L2.

During normal process execution, the size of the checkpoint Now consider 0- 1e have M*(G')[s] t n, for any n, E B2

graph increases as new checkpoints are taken. Because check- because each n. has t.- - a single incoming edge from 1,. Clearly,
point graphs represent program dependencies and are not arbi- any new-node n, t M*(G'),[s. Lemma 2 further guarantees
trary directed acyclic graphs, the following rules must be satis- that Mi (9 V) remains an antichain in G and also in d - Bi.
fled when adding new vertices. For every new vertex c1,2 with Hence, we have MAl U B 2 E M(G - BI).
z>l, We next prove that MA UB2 = M*(O-B,) by contradiction.

Suppose M1 U B-2 M*(Gd - B1). There must exist M1 =
M" (d - BI) \ B2 such that MA S V, MA __ M1 and M, 0 M,,

Rule 1.a: c•,, must have an incoming edge from c,, 1-1; as shown in Fig. 6. Now consider G'. Recall that M, and
Rule 1.b: ci,, can not have any outgoing edge to any existing M2 form an antichain in G' and thus for any u E MAl and

vertices because it can not happen before a checkpoint that M*(G')Cj] E M2, we must have u t M*(G')fjj. We also have
was taken earlier. M°(G')fj] : a by Rule L.b. Therefore, M1t U M 2 forms an

We use 9.(G) to denote the set of all potential supergraphs oh- antichain in G', contradicting the fact that M1 U M 2 is the
tainable by adjoining new vertices to a given checkpoint graph maximal maximum-sized antichain of G'. 0
G without violating Rule L.a and Rule 1.b.

Our transformation procedure generally involves changing The transformation within an operational session can be viewed
part of the recovery line of a graph G, to obtain the recov- as "projecting" a potential supergraph along the direction op-
ery line of another graph G2. The following lemma will be used posite to the time axis. It shows that although the number of

potential supergraphs of G is infinite, the recovery lines of these
It is not hard to see that co,2 being a garbage checkpoint will not be graphs can intersect G in only a finite number of ways, and each

affected by the occurrence of any recovery session because every rollback
either preserves the "triangular" condition in Fig. 4 for CO,2 or simply of the possible intersections must be part of the recovery line of
invalidates cO, 2. an immediate supergraph of G.

Thuunformation across a recovery session recovery line of an immediate supergraph of one of the interme-

Existing vertices on a checkpoint graph, for example, C2.3 diate graphs throughout the transformation procedure. Even-

in Fig. 1(b), can be deleted due to rollback recovery. Let Ga tually, we have v E M*(G - W) for some W C B. 0

denote the extended checkpoint graph am defined in Section I1,
G = (V, E) denote the subgraph of G5 without the virtual Figure 8 gives an example demonstrating the recovery line
checkpoints, and G- = (V-, E-) denote the checkpoint graph transformation. Figure 8(a) is the current checkpoint graph G
immediately after recovery. Figure 7 illustrates these checkpoint considered for garbage collection. Suppose that Fig. 8(b) is the
graphs. Let F denote the part of G deleted by the rollback; extended checkpoint graph when p3 initiates a rollback, then
then we have G- = G - F. By definition, M'(Gs) is the local Fig. 8(c) is the checkpoint graph immediately after the recovery.
recovery line. Let M'(Gs) = M, U M. as shown in Fig. 7(a) Figure 8(d) shows another possible extended checkpoint graph
where Mr = M*(Gs)nV consists of real checkpoints and M, = when po initiates a second rollback. Since checkpoints A and B
M*(Gs) \ V consists of virtual checkpoints. According to the are needed for recovery in this case, they should be considered
rollback propagation algorithm, the following two rules must be nongarbage checkpoints of G. We first apply Property I to
satisfied when existing vertices are deleted during recovery, the graph pairs (Gd, G,) and transform the recovery line of Gd

into the recovery line of G, (an immediate supergraph of Go) byRule 2.a: There cannot exist any u E Mr and to E V- such replacing X, Y and Z with their corresponding new-nodes of Go,

that u < w, i.e., none of the checkpoints in M, can have
namely, P, Q and R, respectively. Then we apply Property 2 to-,-y outgoing edge in G-; the pair (Ge, G6). Since p3 and p4 contribute real checkpoints C

Rule 2.b: For any u in F, all of the checkpoints reachable by u and D, respectively, to the local recovery line in Fig. 8(b), the
must also be in F. Consequently, none of the checkpoints recovery line of Gg is transformed into the recovery line of G!
in F can have any outgoing edge to any checkpoints in G-. (an immediate supergraph of Gb) by replacing Q and R with C
7. Checkpoint graphs before (G), during (Gs) and after and D. Finally, by applying Property 1 to the pair (G!, G), we

Fig. recoverir obtain the recovery line of G. (an immediate supergraph of G)
(G-) recovery.

Property 2 can be proved (14] by defining the recovery line which still contains the nongarbage checkpoints A and B.

transformation across a recovery session as follows: Fig. 8. Example recovery line transformation.

given the recovery line M of an immediate super-
graph of G-, for any i such that M[ij is a new-node C. Recovery Line Decomposition

and M*(GB)[sl is not a virtual checkpoint, we re. Property 3 states that the recovery lines of the 2 V immediate
place M[li with MO(Gs)[s1 to obtain the recovery supergraphs of G contain all nongarbage checkpoints. We next
line of an immediate supergraph of G. show that there exists a set of N recovery lines which forms a

"basis" for the 2N recovery lines. each of the 2g recovery lines
Property 2: For any checkpoint v in G-, if v belongs to the is the set of minimal elements in the union of a subset of the
recovery line of an immediate supergraph of G-, then v must N basis recovery lines. Therefore, it suffices to find these N
also belong to the recovery line of an immediate supergraph of G. recovery lines to identify all nongarbage checkpoints.
That is, given G- = (V-, E-) and v E V-, ifv E M'((- - Let X A Y denote the meet (greatest lower bound) of X and
W-) for some W- C B-, then v E M*(d - W) for some Y in a lattice and min(S) denote the set of minimal elements in
W C B, where 0-, W- and B- are defined for G- in parallel S. Based on the following property from Anderson's book [20]:
with the definitions of (3, W and B for G, respectively, for any poset Q and M1 , M2 E M(Q), MIAM 2 = min(M:UM 2),

Complete transformation we can show by induction [14] that the greatest lower bound of
any k maximum-sized antichains can be obtained as the set of

We now apply Properties 1 and 2 to transforming an arbitrary minimal elements in their union.
future recovery line containing any nongarbage checkpoints. By
repeatedly applying Property 1 within every operational session Lemma 3: Given a poset P, M E Mi(P) and M .< MA E Mi(P)
and Property 2 across every recovery session, we demonstrate for 0 < i < k - 1 for any finite k, define Ao<_<.-. M, =
that every such future recovery line of G can be transformed (...((MO A M1) A M 2) ...) A Mh-.. Then
into the recovery line of an immediate supergraph of G which (a) M -- AA<,< -1 M, E M(P);
preserves all of those nongarbage checkpoints.

Property 3: [Transformation property] If a checkpoint in (b) ,AO<i<, M, = min(U 0< <,, M,).

G belongs to a future recovery line, then it must also belong The following lemma which states the relationship between
to the recovery line of an immediate supergmoph of G. That the maximum-sized antichains of G and those of its potential
is, given G = (V, E) and v E V, if v E M*(G') for a future supergraphs is also required for proving the decomposition prop-
checkpoint graph G', then v E M*(d - W) for some W C B. erty.

Proof. Without loss of generality, we may assume G is in the
qth operational session and G' belongs to the rth session where Lemma 4: Given a checkpoint graph G = (V, E) and its po-
r > q. Let G, denote the checkpoint graph at the end of the tential supergraph G' = (V', E'), for any M C V,
ith operational session, G- denote the checkpoint graph at the (a) M 6 M(G) if and only if M 6 M(G');

beginning of the same session, and W, denote a subset of new-
nodes of G(. Clearly, v must belong to every such intermediate (b) M(G) M(G);
graph. By applying Property 1 to the graph pairs (G',G,'), (c) if M = M*(G') then M = M*(G).
(G, - W,,G,-) where q + 1 < j :_ r - 1 and (Gq - Wq, G),
and applying Property 2 to the graph pairs (G7,G,-_) where Property 4: [Decomposition property] For every W C B
q + 1 < j < r, we can show that v must always remain on the and W 6 0, M*(d - W) = min(U., w M*(G - ni)).

Proof. Without loss of generality, let W = jai : 0 < i < however, determines that all of the nonshaded checkpoints in
k - 1) where 1 5 k < N. Since (d - nj E 9(G - W) for all Fig. 9(f) can be discarded.
0:5 j:5 k -1, M*(-- W) _• M°(Q -n,) by Lemma 4(b).

Now consider the graph (0. From Lemma 4(a), we have IV. LEAST UPPER BouND ON NUMBER
M°(G - W) E Mtd) and M°(G - n,) E M(V) for all 0 < j5 < o NONGAIWAGE CHECKPOINTS
k - 1. Let Mk = min(U 05j,<h_- M((G - n,)). From Lemma 3, Theorem 1 not only identifies the minimum set of nongarbage
we have checkpoints but also places an upper bound N 2 on the number

M*(d - W):-5 A M * (d- n,) -- Mk E MA,). of nongarbage checkpoints because each M'(d - n,), 0 < i _<A - N - I, consists of N checkpoints. The following property iden-05j<k-1 tifies the inherent relations among M*(G -,)'s, and is the key
Sie aa < <k-1, to further improving the N 2 upper bound to the least upperSince M'(G-n,)(.i] < a3 and thus ns, • MZ for blund _(N +<1)-l,

every z E M,* must be contained in G - W. From Lemma bound N(N + 1)/2.

4(a), we have Me E M((- W) and hence M IZ M*(d - Property 5: ForanY0 < i,j < N-1 and Oij, if M(GO-
W). Therefore, we have proved that M*(d - W) = M* = ni)[j] 0 na and M*(G-n,)[i] 0 n,, then M*(G-n.) = M*(G-
min(UNEW Me(d- n,)). 0 n,).

We are now prepared to prove the second major result of this
As an example, we demonstrate the decomposition of M * (G,) paper.

in Fig. 8(e) Where G. = G - f SO, "Ii, n3, U4. From Property 4 Theorem 2c Let Nq(G) denote the set of nongarbage check-
and referring to Fig. 9, we have points of G and N be the number of processes. Then, IN,(G)I I

M°(G.) = min(U M°(G - ni)) N(N + 1)/2.

Proof. By Theorem 1, we have to consider only the N 2 ver-

= min({A,B,n2,ns,n4,nO,I,nl,J,C,DI) tices M(d - ni)[], 0 < i,j <_ N-1. First, M*(d - n,)[i] for
al 0 < i _< - I must be in G and must contribute N vertices

-= {A,B, ,C,D) to Nq(G). For the remaining N2 - N vertices with i 0 j, we
consider the pair M*(6 - ,)[j] and M*(d - s,)[iJ one at a

which is exactly the recovery line shown itime and there are (N2 - N)/2 such pairs. We distinguish three

Fig. 9. Example of the PCSR algorithm. Shaded checkpoints came:
in (a)-(e) belong to the recovery lines and the nonshaded check- Case 1: M*(d - ,,)[jJ] = na and M*(C - ny)[(' = n,. Both
points in (f) are garbage. new-nodes do not belong to N,(G).

D. Predictive Checkpoint Space Reclamation Algorithm Case 2: M'(4 - n,)(j] = -, and M'(d - n,)[l 96 ni, or

We are now prepared to derive a necessary and sufficient con- M*(d - ni)[l] # n, and M*(d - n,)(i] = n,. This pair will
dition for identifying all nongarbage checkpoints, possibly add one new checkpoint to N,(G).

Case 3: M*(d - n,)[j] 0 n, and M*(d - n,)[,1 $ n,. It fol-
Theorem 1: A checkpoint v in a checkpoint graph G non- lows from Property 5 that M-(d - n.) = M*(d - n,), and
garbage if and onln ifs v MV)-ai) for some 0 < i < N-I. thus M-(- nsfl] = WV) - n,)(j] and WV) - n,)[,] =

Proof. If v E M*(I - ni) for some 0 < i < N - 1, then v is Me(d - ni)[s.- Since M*(V - n,,)(j and M*(C - n,)[(] are
nongarbage because G-n, is a possible future checkpoint graph already in Ng(G), this case does not contribute any new non-
of G. Conversely, if w is nongarbage, we have by definition v E garbage checkpoint.
MW(G') for some future checkpoint graph G'. From Property Therefore, each of the (N 2 - N)/2 pairs can contribute at
3, v E M'(G - W) for some W C B; from Property 4, most one new checkpoint to N,(G) and hence JNv(G)I < N +

v E min(U M'(d- n)) (N 2 -N)2x1=N(N+1)/2. 0

neW We next show that N(N + 1)/2 is in fact the least upper

- U M i - h') U M(-i). bound because for any N we can construct a checkpoint graph
niO.w <i_'N-1 G•/ as shown in Fig. 11 to achieve this upper bound. Figure 11

shows the nongarbage checkpoints contributed by each of the
Therefore, v E M*((- n,) for some 0 < i < N - 1. o N recovery lines in the PCSR algorithm. All of the N(N + 1)/2

checkpoints are identified as nongarbage checkpoints.
Based on Theorem 1 we now present the Predictive Check- Fig. 11. Gr: The checkpoint graph with N(N + 1)/2 non-

point Space Reclamation (PCSR) algorithm in Fig. 10 for finding garbage checkpoints.
the N recovery lines. Since the rollback propagation algorithm As a final note, the greatest lower bound of N is achieved
in Fig. 2 is of time complexity O(IEI) where fEl is the total when none of the (N 2 - N)f2 pairs contributes any nongarbage
number of edges in the checkpoint graph (as every edge vis- checkpoint. Coordinated checkpointing protocols (61 guarantee
ited can be deleted), the PCSR algorithm is of time complexity that, immediately after a checkpointing session, the last-node
O(NIEI). of every process must be a maximal element; as a result, Cae I
Fig. 10. The Predictive Checkpoint Space Reclamation algo- holds for all pairs, thereby achieving the greatest lower bound.
rithm.

An example illustrating the execution of the PCSR algorithm V. TRAcE-DRIVEN SIMULATION RESULTS
on the checkpoint graph G in Fig. 5 is shown in Fig. 9. ADl Four parallel programs are used to illustrate the checkpoint
of the checkpoints in G are nonobsolete and must be retained space reclamation capabilities and benefits of the PCSR algo-
according to the traditional algorithm. Our PCSR algorithm, rithm. Two of them are CAD programs written for Intel iPSC/2

hypercube: Cell Placement and Channel Router; the other two (4] Y. M. Wang and W. K. Fuchs, "Optimistic message logging
ane Knight Tour and N-Queen written in the Chare Kernel lan- for indepeidet checkpointing in message-passing systems," in

naW, which has been developed as a message-driven machine- Proc. IEEE Smp. Reliable Distributed Spat., pp. 147-154,

independent parallel language [21]. We use the Encore Mul- O
os] K. M. Chandy and L. Lamport, "Distributed snapshots: Deter-

timax 510 multiprocessor version of the Chare Kernel. Co- miinslo stesofdistributedsystems," A CM Trans. Com-
munication traces are collected for these four programs, and put. Sypt., Vol. 3, No. 1, pp. 63-75, Feb. 1989.
trace-driven simulation is performed to obtain the results. The [6] R. Koo and S. Toueg, "Checkpointing and rollback-recovery for
checkpoint interval for each program is arbitrarily chosen to be distributed systems," IEEE Trass. Software Eng., Vol. SE-13,

approximately ten percent of the total execution time, as shown No. 1, pp. 23-31, Jan. 1987.

in Table l. [7] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, -The per-
formanceof consistent checkpointing," in Proc. IEEE Symp. Re-

Table 1. Execution and checkpoint parameters of the programs. liable Distributed Spat., pp. 39-47, Oct. 1992.
Figure 12 compares our PCSR algorithm with the traditional [81 Y. M. Wang and W. K. Fuchs, "Lasy checkpoint coordinaion

algorithm for typical executions of the four programs. Each for bounding rollback propagation." to appear in Proc. 12tI
curve shows the number of checkpoints which would be retained Symp. on Reliable Distributed Slat., Oct. 1993.

if the algorithm is invoked after a certain number of checkpoints (9] R. E. Strom and S. Yemini, "Optimistic recovery in distributed
have been taken. The domino efect is illustrated by the lnear systems," ACM 7Tran. Compat. Spat., Vol. 3, No. 3, pp. 204-

226, Aug. 1986.
increase in the number of nonobeolete checkpoints as the total [10] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed
number of checkpoints increases. The largest difference between systems using optinistic memsage logging and checkpointing,"
the number of nonobsolete checkpoints and the number of non- J. AloritAhm, Vol. 11, pp. 462-491,1990.
garbage checkpoints for each program is 39 versus 7 for Cell [11] A. P. SistlaandJ. L. Welch, "Efficient distributedrecovery using
Placement, 48 versus 12 for Channel Router, 24 versus 10 for message logging," in Proc. 8th ACM Symposium on Pr•nc•ples

Knight Tour and 41 versus 5 for N-Queen. 01 Distributed Computiu7, pp. 223-238,1989.
[12] Y. M. Wang, "Space reclamation for uncoordinated checkpoint-

Fig. 12. Nonobeolete versus nongarbage checkpoints for the ing in message-passing systems." Ph.D. dissertation, Depart-
four parallel programs. ment of Electrical and Computer Engineering, University of mi-

nois at UrbanaChampaign, Aug. 1993.

VI. SUMMARY [13] Y. M. Wang, Y. Huang, and W. K. Fuchs, "Progressive retry for
software error recovery in distributed systems," in Proc. IEEE

We have derived a necessary and sufficient condition for iden- Fault-Tolerant Computing Smo., pp. 138-144, June 1993.
tifying all garbage checkpoints in an uncoordinated checkpoint- (14] Y. M. Wang, P. Y. Chung, 1. J. Lin, sud W. K. Fuchs,
ing protocol. We proved that there exists a set of N recovery "Checkpoint space reclamation for uncoordinated checkpoint-

lines, where N is the number of processes, such that any check- ing in message-passing systems." Tech. Rep. CRHC-92-06, Co-ordinate Scenmce Laboratory, University of Ilinois at UrbrA&,-
point useful for a possible future recovery must be contained ChampaiSn, 1992.
in one of the N recovery lines. An optimal checkpoint space [15] R. D. Schlichting and F. B. Schneider, "Fail-stop processors: An
reclamation algorithm of time complexity O(NJEI), where JEJ approach to designing fault-tolerant computing systems," ACM
is the number of edges in the checkpoint graph, was presented Tran. Comput. Slat., Vol. 1, No. 3, pp. 222-238, Aug. 1983.
to identify all nongarbage checkpoints; the storage space for [16] A. Borg, W. Blan, W. Graetsch, F. Herrmann, and W. Oberle,
the remaining checkpoints can then be reclaimed. In addition, "Fault tolerance under UNIX," ACM Trans. Com- et. Spat.,

we demonstrated that the least upper bound on the number of Vol. 7, No. 1, pp. 1-24, Feb. 1989.
nongarbage checkpoints is N(N .. I)2. Communication trace- (171 M. L. Powell and D. L. Presotto, "Publishing: A reliable

broadcast communication mechanism," in Proc. 9th ACM
driven simulation for four parallel programs demonstrated that Symp. Oper. Slat. Principles, pp. 100-109, 1983.
the algorithm can be effective in significantly reducing the num- [18] Y. M. Wang, A. Lowry, and W. K. Fuchs, "Consistent global
ber of retained checkpoints. checkpoints based on direct dependency tracking." Research

Report RC 18465, IBM T.J. Watson Research Center, York-
"AEtown Heights, New York, Oct. 1992. Submitted to Inform. Pro-

ACKNOWLEDGMENT cess. Left.
The authors wish to express their sincere thanks to Douglas [191 L. Lamport, "Time, clocks and the ordering of events in a dis-

West and Weiping Shi for their discussions; to Michael Loui, tributed system," Commas. ACM, Vol. 21, No. 7, pp. 558-565,
Andy Lowry, Kang Shin, Robert Strom, and the anonymous July 1978.

referees for their valuable comments; to Balkrishna Ramkumar (20] I. Anderson, Combinatorics of Finite Sets. Oxford: Clarendon
Press, 1987.

and Jusheng Long for their help with the experimental results, - 211 W. Shu and L. V. Kali, "Chare kernel - A runtime support sys-
to L. V. Kal6 for access to the Chare Kernel and to Prith Baner- tem for parallelcomputations," J. Parallel Distributed Comput.,
jee for use of his hypercube programs. Vol. 11, pp. 198-211, 1991.

REFERENCEs

[1] B. Randell, "System structure for software fault tolerance,"
IEEE Trans. Software Eng., Vol. $E-I, No. 2, pp. 220-232, June
1975.

[2] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery
schemes for distributed processes," in Proc. IEEE Bad Spmp.
on Reliability is Distributed Software and Database Systems,
pp. 124-130, 1981.

[3) B. Bhargava and S. R. Lian, "Independent checkpointing and
concurrent rollback for recovery - An optimistic approach," in
Proc. IEEE Spmp. Reliable Distributed Spot., pp. 3-12, 1988.

AFFILIATION OF AUTHORS:

Yi-Min Wang was with the Coordinated Science Laboratory, University of Illinois, Urbana, IL

61801; he is now with AT&T Bell Laboratories, Murray Hill, NJ 07974.

Pi-Yu Chung and W. Kent Fuchs are with the Coordinated Science Laboratory, University of

Illinois, Urbana, IL 61801.

In-Jen Lin is with the Department of Mathematics, University of Illinois, Urbana, IL 61801.

ACKNOWLEDGMENT OF FINANCIAL SUPPORT:

This research was supported in part by the Department of the Navy and managed by the Office

of the Chief of Naval Research under Contract N00014-91-J-1283, and in part by the National

Aeronautics and Space Administration (NASA) under Grant NASA NAG 1-613, in cooperation

with the Illinois Computer Laboratcry for Aerospace Systems and Software (ICLASS).

NUMBERED FOOTNOTES:

(1) Extension of our work to an asynchronous logging protocol is considered elsewhere [4].

(2) The global recovery line is to be used when the entire system fails, while a local recovery line

is computed when only a subset of processes fail.

(3) It has been pointed out [18] that the poset RW corresponding to the transitive closure of the

checkpoint graph based on direct dependency tracking is not exactly the same as R. However, R'

and R possess the same set of maximum-sized antichains.

(4) It is not hard to see that c0 ,2 being a garbage checkpoint will not be affected by the occurrence

of any recovery session because every rollback either preserves the "triangular" condition in Fig. 4

for cO-2 or simply invalidates c0,2.

FIGURE CAPTIONS:

Fig. 1. Checkpointing and rollback recovery. (a) Example checkpoint and communication pattern;

(b) checkpoint graph and extended checkpoint graph when p0 initiates a rollback.

Fig. 2. The rollback propagation algorithm.

Fig. 3. Operational sc-Fions, recovery sessions and nongarbage checkpoints.

Fig. 4. Example of nonobsolete garbage checkpoints.

Fig. 5. Construction of the potential supergraph G.

Fig. 6. Recovery line transformation within an operational session.

Fig. 7. Checkpoint graphs before (G), during (GE) and after (G-) recovery.

Fig. 8. Example recovery line transformation.

Fig. 9. Example of the PCSR algorithm. Shaded checkpoints in (a)-(e) belong to the recovery

lines and the nonshaded checkpoints in (f) are garbage.

Fig. 10. The Predictive Checkpoint Space Reclamation algorithm.

Fig. 11. Gýv: The checkpoint graph with N(N + 1)/2 nongarbage checkpoints.

Fig. 12. Nonobsolete versus nongarbage checkpoints for the four parallel programs.

TABLE CAPTION:

Table 1. Execution and checkpoint parameters of the programs.

-1 - P0 LP P

4-tende- checkpo intaP l -

P z + 4 . .4 ...'.. P .-.-.....,•:

P 3 " P 3

+ Checkpoint " Message Checkpoin ,graph
Extended checkpoint graph

(a) (b)

/* CP stands for checkpoint *

/* Initially, all of the CPs are unmarked *

include the latest CP of each process in the root set;
mark all CPs strictly reachable from any CP in the root set;
while (at least one CP in the root set is marked) {

replace each marked CP in the root set by the latest unmarked CP of the same
process;
mark all CPs strictly reachable from any CP in the root set;

}
the root set is the recovery line.

2

H~JL~+JLH - Time

cuff"mt

gMph Gor

C 1' c 02

1 c 1,2

4

l n

P 1 -

12
P3

2

p 4 I

-- ,...-4 . n 3

P G

5

Current graph G,
P ,

P2 : .4.P2 I1 t..l '

P3 ' ,
*

I
I J

----------------------------- I

Potential supergraph a'

'I Immediate supergraph G- B1

MI MI' L2 B2

P2 '

P4 J ,

I o

16---------------- -------- B

6

pI Mr-o_ p I

P2 P 2

P 3 p 3

P 4 P 4G G"

GE

(a) (b)

7

PGPo

P3

P 0 i
P1

P2......
P22 J 2

P3 c P

P 4 P4Q

P 1 O

P2

P 3
3

P4 d1 lkW.
(d) G0 - - - - - -- - - - - -

Po M G

P-2N P22

(a) G o(b) G-a 1

P .. - I --- X

I p

--- -P2 P2N

P3 P 3 :

P 4 1 P4 n

c)G-n 2 (d) Ga3

P I I,

P2 I..... 2 P

I I

----------------------------- J 1 :- - - - - - - -

(e) G-x 4 M G

9

/* N,(G) denotes the set of nongarbage checkpoints of G */
/* N is the number of processes */
/* d and nl are as defined in Fig. 5 */

for each 0 < i 5 N -1 {
apply the rollback propagation algorithm in Fig. 2 to the checkpoint graph G- nC
to find the recovery line;
all checkpoints in the recovery line except for the new-nodes are included in the set
Nq(a);

}
all of the checkpoints not in N,(G) can be garbage-collected.

10

Po

P2 -

P .N--2
P N -
* 7e* S e S

iN *- i •-

11

Number of 30
retaine

checkpoints 24 NonobWc --
Wnogarbage --

18

M

12r

6

0
0 6 12 18 24 30 36 42 48 54

Number of checkpoints taken

(c)

Number of 48 I

tained 2
42checkpoints Nonoblftk -0==

36 - Nongsib =+-

30

24

18 -

12-

6 0 - ..,.,....,,,,-------.,.,,

0 6 12 18 24 30 36 42 48 54 60

Number of checkpoints taken

(d)

12

4

Table 1. Execution and checkpoint parameters of the programs.

IBenchmark fl Cell Channel jKnighit NQue
programs Placement Router Tour

Number of
processors 8 8 6 6
Machine Intel iPSC/2 Intel iPSC/2 Encore Encore

hypercube hypercube Multimax Multimax
Execution
time (sec) 322.7 469.3 273.2 1625.1
Checkpoint
interval (sec) 35 40 30 150

